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PERSPECTIVES IN HUMAN GENETICS

New Perspectives for the Elucidation of Genetic Disorders
Hans-Hilger Ropers

For almost 15 years, genome research has focused on the search for major risk factors in common diseases, with dis-
appointing results. Only recently, whole-genome association studies have begun to deliver because of the introduction
of high-density single-nucleotide–polymorphism arrays and massive enlargement of cohort sizes, but most of the risk
factors detected account for only a small proportion of the total genetic risk, and their diagnostic value is negligible.
There is reason to believe that the complexity of many “multifactorial” disorders is primarily due to genetic heterogeneity,
with defects of different genes causing the same disease. Moreover, de novo copy-number variation has been identified
as a major cause of mental retardation and other complex disorders, suggesting that new mutations are an important,
previously overlooked factor in the etiology of complex diseases. These observations support the notion that research
into the previously neglected monogenic disorders should become a priority of genome research. Because of the intro-
duction of novel high-throughput, low-cost sequencing methods, sequencing and genotyping will soon converge, with
far-reaching implications for the elucidation of genetic disease and health care.
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Until the early ’90s, the project to sequence the human
genome was driven by the expectation that it would pave
the way for the elucidation of all known Mendelian dis-
orders (e.g., see the work of Guyer and Collins1 and ref-
erences therein). Later, expectations were raised further by
optimistic statements of leading genome researchers about
the impact of this research for common disorders like cor-
onary heart disease, stroke, dementia, psychiatric disor-
ders, asthma, and cancer. For the pharmaceutical industry
and for politicians alike, these prospects were extremely
attractive. This was the reason why the search for genetic
causes of complex diseases has received highest priority
worldwide.

Genetic Risk Factors for Complex Disorders: Light
at the End of the Tunnel?

On the basis of the assumption that most frequent dis-
orders are multifactorial—that is, due to an interplay of
genetic and nongenetic factors—and that hereditary risk
factors for common diseases are evolutionarily old,2–5 in-
dustry and government agencies have spent billions of
dollars to search for associated DNA variants in the human
genome that are more common in patients with specific
complex disorders than in healthy individuals. However,
genomewide association studies have often yielded contra-
dictory results, which was generally ascribed to insuffi-
cient cohort sizes and marker densities,6–9 and, apart from
a few notable exceptions (e.g., the work of Klein et al.10),
major risk factors for complex disorders have remained
elusive.

Recent studies have shown that even mildly deleterious,
evolutionarily old mutations are unlikely to have survived
as common polymorphisms in the human population.11

Thus, most of the genetic risk for common disease must
be conferred by low-frequency alleles, as suggested else-
where12,13 and empirically confirmed—for example, for
high-density lipoprotein levels in plasma.14

Identification of rare risk alleles, either directly or through
association, requires a dense network of polymorphic mark-
ers. Closely linked genetic markers are often transmitted
as evolutionarily conserved haplotype blocks.15 To maxi-
mize the resolution of whole-genome association studies
and to limit the number of markers that have to be typed,
the International HapMap Project generated dense ge-
nomewide maps of SNPs and has characterized the linkage
disequilibrium among them. According to recent esti-
mates, however, comprehensive haplotype-based genome-
wide association studies still require typing of several hun-
dred thousand of the ∼6 million validated SNPs that are
currently known (see National Center for Biotechnology
Information dbSNP, build 127, March 2007). This number
is much larger than originally expected but still manage-
able because of the availability of DNA arrays that allow
typing of 1500,000 SNPs in a single experiment.16

Array-based SNP typing and analysis of large cohorts of
patients and controls have significantly enhanced the
power of association studies; very recently, this has led to
the identification of genetic risk factors for various com-
plex disorders, including type 2 diabetes, myocardial in-
farction, prostate cancer, Crohn disease, and obesity.17–24

Moreover, pooling strategies have been developed that
drastically reduce the costs of such investigations.25

Most Risk Factors Are of No Diagnostic Relevance

After the long, futile search for such risk factors, these
developments have been greeted with elation and relief,
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but, in view of the growing euphoria, it may be necessary
to put these results into perspective. So far, the identifica-
tion of these novel risk factors has not shed much light
on the pathogenesis of the relevant complex diseases.
Many of the associated markers were found in noncoding
regions17–22 or in genes with unknown function,23,24 and,
in other studies, the responsible sequence variants could
not be precisely mapped because of limited resolution of
association and linkage analysis.

Moreover, most of these factors account for only a small
proportion of the total genetic risk, and their presence or
absence will rarely increase or reduce the recurrence risk
for the relevant disorder more than twofold. In contrast,
being the sibling of a patient with a complex disorder such
as schizophrenia, type 1 diabetes, or cleft lip and palate
will raise the recurrence risk 10- to 40-fold above the pop-
ulation risk. These recently identified genetic risk factors
are thus of no diagnostic and little prognostic value. This
will change only if most other genetic risk factors are de-
termined—and, even then, only if and when typing of all
these factors becomes part of the diagnostic routine, which
is not likely to happen in the near future.26

Why Association Studies May Still Fail

Insufficient sample sizes and marker densities are not the
only problems complicating the search for genetic factors
that are associated with complex disorders. In fact, there
are more fundamental reasons why this strategy can meet
with only limited success. One of these is genetic hetero-
geneity, which accounts for the complexity of many “mul-
tifactorial” disorders.27 The most extreme example of this
is mental retardation (MR), the complex disorder with the
highest socioeconomic costs in developed societies.28–30 Al-
most 300 different gene defects are known to give rise to
MR,31 but their total number may run into the thousands,
and most of them are still unknown (reviewed elsewhere,30

and see the “Large-Scale Mutation Screening in MR and
Other Diseases” section). Different single-gene defects have
also been identified in a wide variety of other complex
disorders, such as Alzheimer and Parkinson disease, breast
and colon cancer, coronary heart disease, hypertension (re-
viewed by Peltonen et al.32 and Campion33), and atopic
dermatitis,34,35 and much of our present knowledge about
the pathogenesis of complex disorders has come from the
study of monogenic forms. Moreover, novel disease-caus-
ing gene defects may be much more common in these
conditions than previously thought, as judged from the
high number of de novo copy-number variants (CNVs) re-
cently detected in various complex disorders (see the “CNV
and Disease” section), and most of these mutations may
be too short lived to be detectable by association studies.

…and Why Monogenic Disorders Should Be
Studied in a Systematic Fashion

Thus, systematic resequencing of genes that have been
implicated in related Mendelian disorders is a promising
strategy for the identification of risk factors for complex
diseases (see the Nature Genetics editorial36). However,
monogenic disorders are also important in their own right.
To date, only ∼2,000 of the estimated 25,000 protein-cod-
ing human genes—and almost none of the many genes
that do not code for protein—have been implicated in
disease, and causative mutations are known for only 3,345
mapped disorders.37 It is clear, however, that this is just
the tip of the iceberg. Disorders listed in OMIM are en-
riched for diseases that run in families, because isolated
cases are much less likely to be identified as being genetic,
particularly if there is no specific, recognizable clinical
phenotype. Severe autosomal disorders with early onset
are mostly sporadic, because affected patients will seldom
reproduce, and, in countries with small family sizes and
low consanguinity rates, most patients with recessive dis-
orders will be sporadic cases too. In the mouse, most loss-
of-function mutations seem to result in phenotypic abnor-
malities; only 3%–4% of the knockout mutations listed
on the Frontiers in Bioscience Database of Gene Knock-
outs were phenotypically normal (discussed by Brinkman
et al.38), and learning or memory was affected in 75% of
mice with mutations inactivating postsynaptic density pro-
teins (S. Grant, Sanger-Wellcome Centre, personal commu-
nication; see also the work of Pocklington et al.39). Thus,
it is likely that the vast majority of single-gene defects that
give rise to disease have not been identified yet.

Still, in contrast to the mouse and other model organ-
isms in which the effects of single-gene mutations are be-
ing explored in a systematic manner (e.g., see the Knock-
out Mouse Project), the elucidation of monogenic disor-
ders in man lags behind. This is particularly puzzling be-
cause, for many disorders, even the closely related mouse
is not a good model, since orthologous gene defects in the
two species often fail to yield comparable phenotypes.
Moreover, numerous complex traits, notably cognitive de-
fects, are extremely difficult to study in model organisms.

Thus, there are compelling arguments for putting more
effort into the elucidation of human monogenic disor-
ders,38,40,41 which has been greatly facilitated by the avail-
ability of the entire sequence of the human genome. At
present, a variety of efficient strategies are available for
the study of Mendelian disorders, as discussed below, and
several of these are also suitable for large-scale, systematic
studies of apparently complex diseases.

Balanced Chromosome Rearrangements

Disease-associated balanced chromosome rearrangements
(DBCRs) truncating or otherwise inactivating genes form a
visible bridge between human phenotypes and genotypes.
Therefore, systematic breakpoint mapping and cloning in
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patients with balanced chromosome rearrangements has
been proposed as an efficient strategy for elucidating the
molecular causes of hereditary disease.42–44 De novo DBCRs
can be identified by conventional karyotyping, and, with
an incidence of 1 in 2,000, they are not rare.45 About 6%
of these are associated with clinical abnormalities such as
MR with or without multiple congenital abnormalities
(MCA), which is seen in almost half of these cases. In gen-
eral, breakage events that give rise to DBCRs are not me-
diated by nonallelic homologous recombination,46 and
they seem to occur everywhere in the human genome.
An advantage of this approach is that breakpoints can be
precisely mapped, in contrast to wide mapping intervals,
which are characteristic of association and linkage studies
and which have hampered the identification of the rele-
vant genes. The Mendelian Cytogenetic Network and its
database MCNdb have been instrumental in the identi-
fication of numerous X-linked and autosomal candidate
genes for MR and other disorders—for example, in the
course of systematic studies conducted at the Max Planck
Institute for Molecular Genetics (Berlin) and the Wil-
helm Johannsen Centre for Functional Genome Research
(Copenhagen). Recently, similar programs to characterize
DBCRs in a systematic fashion have also been initiated
elsewhere.47–49

CNV and Disease

Screening for submicroscopic deletions and duplications,
with use of array-based comparative genomic hybridiza-
tion (array CGH) and related methods, is a novel, powerful
strategy for the identification of disease genes.50 Array CGH
was instrumental in finding the causative defects under-
lying several known malformation syndromes, including
CHARGE (coloboma, heart anomaly, choanal atresia, re-
tardation, genital, and ear anomalies),51 Peters-Plus,52 Pitt-
Hopkins,53,54 and thrombocytopenia-absent radius syn-
drome.55 Moreover, thanks to high-resolution array-CGH
screening, the catalogue of known genomic disorders is
rapidly expanding,56–58 and array CGH–based comparative
analysis of overlapping chromosome rearrangements is
beginning to shed light on the underlying major genes.

De novo genomic imbalances have been detected in 7%
of patients with nonsyndromic MR, with use of tiling path
BAC arrays,59 and, in 10 of 100 mentally retarded patients
studied with (Affymetrix 100k) high-density SNP typing
arrays.60 In a more recent study comprising 350 unselected
mentally retarded patients with normal karyotypes, 16%
of patients had apparently relevant deletions or duplica-
tions.61 Three-fourths of these aberrations were single cases
that had not been described before. On the basis of the
duplication architecture of the human genome, E. Eich-
ler and coworkers recently defined 130 sites that should
be prone to genomic rearrangements; so far, one-third of
these have been implicated in genomic disorders.62 These
data suggest that recurrent events associated with syn-
dromic disease will be enriched in regions flanked by seg-

mental duplications but that the majority of the genomic
imbalances are not mediated by low-copy repeats (LCRs)
and that their variety is virtually unlimited.

Recent studies have revealed that de novo CNVs are com-
mon not only in MR but also in autism,63–65 syndromic66

and nonsyndromic congenital heart defects (F. Erdogan,
L. A. Larsen, H.-H. Ropers, N. Tommerup, and R. Ullmann,
unpublished data), congenital brain malformations,67,68and
other complex disorders. Many of these CNVs are small,
encompassing only few genes. Thus, the systematic search
for such nonpolymorphic CNVs and their molecular char-
acterization in Mendelian and complex disorders is a new
dimension in the identification of gene defects that play
a role in disease.

Large-Scale Mutation Screening in MR and Other
Diseases

Mutation screening of positional and functional candidate
genes is another straightforward strategy for the identifi-
cation of disease genes. X-linked disorders are plausible
targets for such approaches, since they are easily identi-
fiable because of their characteristic inheritance patterns
and the unmasking of recessive traits in males. In this way,
many disease-causing genes have been mapped to the X
chromosome, which has greatly stimulated their identi-
fication. So far, ∼18% of the ∼900 annotated protein-cod-
ing genes on the X chromosome have been implicated in
Mendelian disease, about twice as many as for autosomal
genes (see OMIM). Still, it is likely that the proportion of
genes causing disease if mutated is much higher. For ex-
ample, the ∼30 known genes for nonsyndromic X-linked
MR genes account for only 50% of the patients, and there
may be 1100 genes that can give rise to this condition
(reviewed elsewhere30). With the assumption that 8%–10%
of moderate-to-severe forms of MR are X linked, the vast
majority of the gene defects underlying MR must be au-
tosomal, and linear extrapolation suggests that up to 1,000
different autosomal genes may be involved. Again, this
estimate is conservative, since 110,000 genes are expressed
in the CNS, many more or less exclusively; thus, the num-
ber of MR genes could still be much higher.

Screening all X-chromosomal genes is a viable option
for the elucidation of the molecular basis of X-linked con-
ditions in a systematic way, as illustrated by the remark-
able success of ongoing efforts to sequence most X-chro-
mosomal genes for mutations in a large cohort of families
with XLMR.69–71 For other chromosomes, however, this ap-
proach is less attractive, since they are less densely popu-
lated by known disease loci. Moreover, the enormous se-
quencing capacity required for this “brute force” approach
renders it feasible only for large genome centers, but, as
next-generation sequencing technologies are becoming
available (see the “Novel Sequencing Technologies” sec-
tion), this may soon change.
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Autosomal Recessive Disorders Deserve More
Attention

The strategy of choice for the identification of genes un-
derlying autosomal recessive disorders is homozygosity
mapping in extended consanguineous families, followed
by mutation screening of candidate genes.72,73 However,
compared with X-linked diseases, elucidation of such genes
has lagged behind, largely because of the rarity of such
families in outbred populations of developed countries.
For example, no more than four genes for nonsyndromic
autosomal recessive MR (ARMR) have been identified to
date,74–77 although functional considerations as well as ep-
idemiological data suggest that ARMR is more common
than X-linked and autosomal dominant forms of MR. Only
recently have efforts been undertaken to elucidate reces-
sive disorders in a systematic manner. For example, Woods
et al.,78 Hong et al.,79 and Cox et al.80 have shed light on
the molecular causes of autosomal recessive microcephaly
and other recessive disorders, by homozygosity mapping in
consanguineous Pakistani and Arab families.

Nonsyndromic forms of ARMR are probably more com-
mon than are syndromic ones, as judged from the relative
frequencies of syndromic and nonsyndromic X-linked
MR.81 In the first systematic effort of its kind, Najmabadi
et al.82 and Garshasbi and coworkers83 used DNA array-
based SNP typing to perform homozygosity mapping in
1100 Iranian families with ARMR. These studies defined
various novel loci for nonsyndromic ARMR and paved the
way for the identification of these genes. However, in con-
trast to nonsyndromic recessive deafness, where 50% of
the patients have mutations in a single gene,84 these stud-
ies failed to identify frequent forms of ARMR, indicating
that this condition is extremely heterogeneous, at least in
the Iranian population. Systematic studies of this kind can
be performed only in populations with a high degree of
parental consanguinity and large family sizes, which are
typical of Arab countries, Turkey, Iran, Pakistan, and some
parts of India. The high percentage of MR and congenital
anomalies seen in these countries is thought to reflect a
higher burden of recessive disorders,85 but, almost cer-
tainly, recessive disorders are also underdiagnosed in West-
ern societies. Given their complementary resources, col-
laboration between developing and developed countries
will be the most efficient way to elucidate recessive dis-
eases, which have received too little attention in the past.

Selection of Candidate Genes and Recognition
of Relevant Mutations

Finding causative mutations in large chromosomal inter-
vals defined by homozygosity mapping can be extremely
tedious, however, and the same holds for many of the de-
letion and duplication intervals identified by array CGH
and related techniques. Even in patients with DBCRs, the
identification of the relevant disease genes is not always
trivial, since the clinical abnormality may result from po-

sition effects inactivating genes that are far remote from
the respective breakpoints (e.g., see the work of Jones et
al.,86 Bovie et al.,87 and Baala et al.88). Recently, several
software programs have been developed to facilitate the
selection of candidate genes, such as Positional Medline,
Endeavour,89 Prioritizer,90 and others.91 For heterogeneous
disorders with few specific clinical features, such as MR and
related diseases, the performance of these programs is still
relatively modest, but it is likely to improve as the number
of established links between genotypes and phenotypes
continues to grow and we learn more about the function
of genes in man and related species.

Another problem complicating the search for disease-
causing mutations is the fact that not all of them are easily
recognizable. Various databases exist that list previously
described pathogenic mutations, including general data-
bases such as the Human Gene Mutation Database, which
comprises almost 70,000 entries, and more-focused ones
(curated by the Human Genome Variation Society) that
list known mutations in specific genes or disorders. In
spite of these data, evaluating the clinical relevance of
novel missense mutations is still fairly difficult, even
though there are programs, such as SIFT92 or PolyPhen,93

that facilitate this task. However, the power of such pro-
grams depends in part on the availability of three-dimen-
sional structures for the relevant protein and on knowl-
edge about structural domains that are essential for their
function. So far, this information is available only for a
subset of the human proteins. Even silent mutations may
be pathogenetically relevant,94,95 and numerous genes may
be larger than hitherto known.

Mutation screening is frequently confined to the cod-
ing regions, and the splice sites of genes—that is, intronic
mutations that may alter the splicing pattern96,97—or pro-
moter mutations influencing gene expression levels98,99

will go mostly undetected, largely because of high costs
of mutation screening or because of limited sequencing
capacities.

Novel Sequencing Technologies

Recently, the introduction of novel multiplex sequencing-
by-synthesis technologies has revolutionized resequenc-
ing (reviewed by Bentley100) and removed various obsta-
cles impairing the systematic elucidation of genetic disor-
ders. For the currently available next-generation sequenc-
ing systems, DNA fragmentation and massively parallel
clonal amplification of these fragments is required, fol-
lowed by multiplex pyrosequencing (454-Roche) or step-
wise incorporation of fluorescent dye–labeled nucleotides
(Solexa-Illumina) and visualization by sensitive detection
systems. The pyrosequencing-based system produces su-
perior read lengths (1100 bp, under routine conditions),
which facilitates sequence alignment, but competing sys-
tems have a much larger yield of raw sequence per run
(∼1 Gb compared with ∼20 Mb for the 454-Roche Se-
quencer 20), which renders this system more economical
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despite its much shorter read lengths. With this technol-
ogy, resequencing the entire (nonrepetitive portion of the)
human genome has now become possible for little more
than $100,000, 14 orders of magnitude less than the ∼$3
billion needed to complete the Human Genome Project.
Another commercial manufacturer (Helicos) has an-
nounced that, with the introduction of its sequencing
system, which does not require clonal preamplification
of DNA fragments, sequencing costs may again drop by
a factor of 10, only 1 order of magnitude away from the
“$1,000 genome’” that may become reality within the
next 5–10 years.

…and Implications for the Elucidation of Genetic
Disease

Compared with the $1,000 genome and its implications
for health care and research, which are the subject of a
current public debate (see the Nature Genetics “Question
of the Year”), the ongoing substitution of Sanger sequenc-
ing by much less costly and faster resequencing tech-
niques has received little attention so far. For the eluci-
dation of genetic disorders, the consequences of these de-
velopments are particularly obvious and far reaching.
With these novel techniques at hand, direct sequencing
will often replace indirect (e.g., SNP typing) approaches
for the identification of disease genes and genetic risk fac-
tors; high-throughput, low-cost sequencing will greatly fa-
cilitate the search for causative mutations in large physical
or genetic intervals defined by array CGH or linkage stud-
ies; for the first time, it will be economically feasible to
screen entire genes, including introns, UTRs, and pro-
moter regions, which are likely to harbor previously un-
detected pathogenetic variation. Even the sequencing of
entire (sorted) chromosomes will become possible—for ex-
ample, to shed more light on the pathogenetic relevance
of genes that do not code for protein and other evolu-
tionarily conserved, noncoding regions in the human ge-
nome.101,102 Depending on the availability of cost-effective
methods for enriching DNA sequences from specific ge-
nomic intervals, further widening of the spectrum of ap-
plications for these novel sequencing methods can be
envisaged.

In principle, multiplex resequencing by synthesis should
be much more accurate and reliable for mutation detec-
tion in known genes than is hybridization-based muta-
tion screening with use of high-density oligonucleotide
arrays, which is supported by our own preliminary data
(L. Jensen, W. Chen, A. Kuss, and H.-H. Ropers, unpub-
lished data). Thus, it is likely that the novel high-through-
put sequencing techniques will have wide diagnostic ap-
plications, even in cytogenetics. For example, sequencing
sorted derivative chromosomes is a very fast and econom-
ical strategy for characterization of chromosomal break-
points in patients with disease-associated balanced chro-
mosome rearrangements (W. Chen, V. Kalscheuer, R. Ull-
mann, and H.-H. Ropers, unpublished data). In the near

future, genomic sequencing should even enable us to
identify submicroscopic deletions and duplications and to
characterize them with unmatched precision, thereby re-
placing array CGH, which has only just added a novel
dimension to human genetics and genome research.

Conclusions and Outlook

High-resolution SNP-typing arrays and recently described
pooling strategies have greatly facilitated the identifica-
tion of major genetic risk factors underlying complex dis-
eases, but such major genes seem to be rare. Instead, there
is growing evidence that rare alleles and evolutionarily
short-lived mutations play a major role in the etiology of
complex disorders, which seem to be far more heteroge-
neous than previously assumed. This may be bad news for
pharmaceutical companies searching for blockbuster drugs
that will cure most if not all patients who have a specific
common disease. The good news is that the dissection of
complex disorders into many separate, often monogenic,
entities has greatly increased the chances for understand-
ing the underlying pathogenetic mechanisms—for exam-
ple, by defining novel candidate genes that are part of the
same pathway.

An illustrative example for this is Noonan syndrome,
in which disease-causing mutations have been identified
in PTPN11, KRAS, and SOS1103,104 and have clarified the
relationship between Noonan syndrome and related dis-
orders that are also due to mutations in the RAS-RAF-MEK-
ERK pathway. Novel insights into the molecular causes of
schizophrenia have come from a familial t(1;11) translo-
cation disrupting the DISC1 gene,105 which was found to
cosegregate with schizophrenia and affective disorders.
DISC1 interacts with NDE1 and several other genes in-
volved in brain development and function.106,107 Recent
studies suggest that NDE1 is also directly involved in
schizophrenia,108 and microduplications and deletions en-
compassing the NDE1 gene were found to predispose to
autism and MR, respectively.109 Very recently, NDE1 was
also implicated in Asperger syndrome (L. Peltonen, per-
sonal communication). These observations argue for an
important role of the DISC1-NDE1 pathway in the patho-
genesis of schizophrenia, autism, and related disorders.

In view of the existing powerful strategies for elucidat-
ing genetic defects—including whole-genome screening
for CNV and high-throughput, low-cost sequencing—geno-
typing is no longer the bottleneck. Instead, a major chal-
lenge will be to distinguish disease-causing variants from
functionally neutral ones, which will require the study of
very large cohorts of patients and controls. The outcome
of such studies will critically depend on the clinical char-
acterization and on the handling and interpretation of the
expected flood of new data. Thus, phenotyping, statistics,
and bioinformatics but also functional verification of the
results will be of central importance for systematic efforts
to identify genetic variants that play a role in disease,
including causative mutations, genetic risk factors, and



204 The American Journal of Human Genetics Volume 81 August 2007 www.ajhg.org

modifiers influencing the clinical severity. Their identifi-
cation will have far-reaching consequences for health care,
eventually fulfilling old promises that convinced decision
makers to fund the sequencing of the human genome.
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Web Resources

The URLs for data presented herein are as follows:

Helicos, http://www.helicosbio.com/
Human Gene Mutation Database, http://www.hgmd.cf.ac.uk/ac/

index.php
Human Genome Variation Society, http://www.hgvs.org/ (for the

locus-specific mutation database)
International HapMap Project, http://www.hapmap.org/
Knockout Mouse Project, http://www.knockoutmouse.org/data

.shtml
Max Planck Institute for Molecular Genetics, http://www.molgen

.mpg.de/research/ropers/
Mendelian Cytogenetic Network, http://www.mcndb.org/index

.jsp (for the MCNdb database)
Online Mendelian Inheritance in Man (OMIM), http://www.ncbi

.nlm.nih.gov/Omim/
PolyPhen, http://genetics.bwh.harvard.edu/cgi-bin/pph/

polyphen.cgi
Positional Medline, http://omicspace.riken.jp/PosMed/
Question of the Year, http://www.nature.com/ng/qoty/index.html
SIFT, http://blocks.fhcrc.org/sift/SIFT.html
Wilhelm Johannsen Centre for Functional Genome Research, http:

//www.wjc.ku.dk/publications/ (for systematic characterization
of disease-associated balanced chromosome rearrangements)
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